Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629790

RESUMEN

The heart beats are due to the synchronized contraction of cardiomyocytes triggered by a periodic sequence of electrical signals called action potentials, which originate in the sinoatrial node and spread through the heart's electrical system. A large body of work is devoted to modeling the propagation of the action potential and to reproducing reliably its shape and duration. Connection of computational modeling of cells to macroscopic phenomenological curves such as the electrocardiogram has been also intense, due to its clinical importance in analyzing cardiovascular diseases. In this work, we simulate the dynamics of action potential propagation using the three-variable Fenton-Karma model that can account for both normal and damaged cells through a the spatially inhomogeneous voltage diffusion coefficient. We monitor the action potential propagation in the cardiac tissue and calculate the pseudo-electrocardiogram that reproduces the R and T waves. The R-wave amplitude varies according to a double exponential law as a function of the (spatially homogeneous, for an isotropic tissue) diffusion coefficient. The addition of spatial inhomogeneity in the diffusion coefficient by means of a defected region representing damaged cardiac cells may result in T-wave inversion in the calculated pseudo-electrocardiogram. The transition from positive to negative polarity of the T-wave is analyzed as a function of the length and the depth of the defected region.


Asunto(s)
Arritmias Cardíacas , Modelos Cardiovasculares , Humanos , Electrocardiografía , Potenciales de Acción/fisiología , Miocitos Cardíacos
3.
Sci Rep ; 14(1): 2150, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272962

RESUMEN

An asymmetric pair of coupled nonlinear Schrödinger (CNLS) equations has been derived through a multiscale perturbation method applied to a plasma fluid model, in which two wavepackets of distinct (carrier) wavenumbers ([Formula: see text] and [Formula: see text]) and amplitudes ([Formula: see text] and [Formula: see text]) are allowed to co-propagate and interact. The original fluid model was set up for a non-magnetized plasma consisting of cold inertial ions evolving against a [Formula: see text]-distributed electron background in one dimension. The reduction procedure resulting in the CNLS equations has provided analytical expressions for the dispersion, self-modulation and cross-coupling coefficients in terms of the two carrier wavenumbers. These coefficients present no symmetry whatsoever, in the general case (of different wavenumbers). The possibility for coupled envelope (vector soliton) solutions to occur has been investigated. Although the CNLS equations are asymmetric and non-integrable, in principle, the system admits various types of vector soliton solutions, physically representing nonlinear, localized electrostatic plasma modes, whose areas of existence is calculated on the wavenumbers' parameter plane. The possibility for either bright (B) or dark (D) type excitations for either of the (2) waves provides four (4) combinations for the envelope pair (BB, BD, DB, DD), if a set of explicit criteria is satisfied. Moreover, the soliton parameters (maximum amplitude, width) are also calculated for each type of vector soliton solution, in its respective area of existence. The dependence of the vector soliton characteristics on the (two) carrier wavenumbers and on the spectral index [Formula: see text] characterizing the electron distribution has been explored. In certain cases, the (envelope) amplitude of one component may exceed its counterpart (second amplitude) by a factor 2.5 or higher, indicating that extremely asymmetric waves may be formed due to modulational interactions among copropagating wavepackets. As [Formula: see text] decreases from large values, modulational instability occurs in larger areas of the parameter plane(s) and with higher growth rates. The distribution of different types of vector solitons on the parameter plane(s) also varies significantly with decreasing [Formula: see text], and in fact dramatically for [Formula: see text] between 3 and 2. Deviation from the Maxwell-Boltzmann picture therefore seems to favor modulational instability as a precursor to the formation of bright (predominantly) type envelope excitations and freak waves.

4.
Phys Rev E ; 108(5): L052201, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115488

RESUMEN

Flat band systems can yield interesting phenomena, such as dispersion suppression of waves with frequency at the band. While linear transport vanishes, the corresponding nonlinear case is still an open question. Here, we study power transmission along nonlinear sawtooth lattices due to waves with the flat band frequency injected at one end. While there is no power transfer for small intensity, there is a threshold amplitude above which a surge of power transmission occurs, i.e., supratransmission, for defocusing nonlinearity. This is due to a nonlinear evanescent wave with the flat band frequency that becomes unstable. We show that dispersion suppression and supratransmission also exist even when the band is nearly flat.

5.
Chaos ; 31(9): 093102, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34598466

RESUMEN

The phenomena of intermittent and complete synchronization between two out of three identical, magnetically coupled Superconducting QUantum Interference Devices (SQUIDs) are investigated numerically. SQUIDs are highly nonlinear superconducting oscillators/devices that exhibit strong resonant and tunable response to applied magnetic field(s). Single SQUIDs and SQUID arrays are technologically important solid-state devices, and they also serve as a testbed for exploring numerous complex dynamical phenomena. In SQUID oligomers, the dynamic complexity increases considerably with the number of SQUIDs. The SQUID trimer, considered here in a linear geometrical configuration using a realistic model with experimentally accessible control parameters, exhibits chaotic and hyperchaotic behavior in wide parameter regions. Complete chaos synchronization as well as intermittent chaos synchronization between two SQUIDs of the trimer is identified and characterized using the complete Lyapunov spectrum of the system and appropriate measures. The passage from complete to intermittent synchronization seems to be related to chaos-hyperchaos transitions as has been conjectured in the early days of chaos synchronization.

6.
Chaos ; 30(12): 123127, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33380026

RESUMEN

A system of two identical superconducting quantum interference devices (SQUIDs) symmetrically coupled through their mutual inductance and driven by a sinusoidal field is investigated numerically with respect to dynamical properties such as its multibranched resonance curve, its bifurcation structure and transition to chaos as well as its synchronization behavior. The SQUID dimer is found to exhibit a hysteretic resonance curve with a bubble connected to it through Neimark-Sacker (torus) bifurcations, along with coexisting chaotic branches in their vicinity. Interestingly, the transition of the SQUID dimer to chaos occurs through a torus-doubling cascade of a two-dimensional torus (quasiperiodicity-to-chaos transition). Periodic, quasiperiodic, and chaotic states are identified through the calculated Lyapunov spectrum and illustrated using Lyapunov charts on the parameter plane of the coupling strength and the frequency of the driving field. The basins of attraction for chaotic and non-chaotic states are determined. Bifurcation diagrams are constructed on the parameter plane of the coupling strength and the frequency of the driving field, and they are superposed to maps of the three largest Lyapunov exponents on the same plane. Furthermore, the route of the system to chaos through torus-doubling bifurcations and the emergence of Hénon-like chaotic attractors are demonstrated in stroboscopic diagrams obtained with varying driving frequency. Moreover, asymmetric states that resemble localized synchronization have been detected using the correlation function between the fluxes threading the loop of the SQUIDs.

7.
Chaos ; 30(1): 013115, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32013479

RESUMEN

The Superconducting QUantum Interference Device (SQUID) is a highly nonlinear oscillator with rich dynamical behavior, including chaos. When driven by a time-periodic magnetic flux, the SQUID exhibits extreme multistability at frequencies around the geometric resonance, which is manifested by a "snakelike" form of the resonance curve. Repeating motifs of SQUIDs form metamaterials, i.e., artificially structured media of weakly coupled discrete elements that exhibit extraordinary properties, e.g., negative diamagnetic permeability. We report on the emergent collective dynamics in two-dimensional lattices of coupled SQUID oscillators, which involves a rich menagerie of spatiotemporal dynamics, including Turing-like patterns and chimera states. Using Fourier analysis, we characterize these patterns and identify characteristic spatial and temporal periods. In the low coupling limit, the Turing-like patterns occur near the synchronization-desynchronization transition, which can be related to the bifurcation scenarios of the single SQUID. Chimeras emerge due to the multistability near the geometric resonance, and by varying the dc component of the external force, we can make them appear and reappear and, also, control their location. A detailed analysis of the parameter space reveals the coexistence of Turing-like patterns and chimera states in our model, as well as the ability to transform between these states by varying the system parameters.

8.
Sci Rep ; 9(1): 4904, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894598

RESUMEN

The conditions leading to flat dispersionless frequency bands in truly one-dimensional parity-time ([Formula: see text]) symmetric metamaterials comprised of split-ring resonators (SRRs) arranged in a binary pattern are obtained analytically. In this paradigmatic system, in which the SRRs are coupled through both electric and magnetic dipole-dipole forces, flat-bands may arise from tailoring its natural parameters (such as, e.g., the coupling coefficients between SRRs) and not from geometrical effects. For sets of parameters which values are tailored to flatten the upper band of the spectrum, the solution of the corresponding quadratic eigenvalue problem reveals the existence of compact, two-site localized eigenmodes. Numerical simulations confirm the existence and the dynamic stability of such modes, which can be formed through the evolution of single-site initial excitations without disorder or nonlinearity.

9.
Phys Rev E ; 98(1-1): 012207, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30110756

RESUMEN

A SQUID (Superconducting QUantum Interference Device) metamaterial on a Lieb lattice with nearest-neighbor coupling supports simultaneously stable dissipative breather families which are generated through a delicate balance of input power and intrinsic losses. Breather multistability is possible due to the peculiar snaking flux amplitude-frequency curve of single dissipative-driven SQUIDs, which for relatively high sinusoidal flux field amplitudes exhibits several stable and unstable solutions in a narrow frequency band around resonance. These breathers are very weakly interacting with each other, while multistability regimes with a different number of simultaneously stable breathers persist for substantial intervals of frequency, flux field amplitude, and coupling coefficients. Moreover, the emergence of chimera states as well as temporally chaotic states exhibiting spatial homogeneity within each sublattice of the Lieb lattice is demonstrated. The latter of the states emerge through an explosive hysteretic transition resembling explosive synchronization that has been reported before for various networks of oscillators.

10.
Chaos ; 28(6): 063117, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960413

RESUMEN

The radio frequency (rf) Superconducting QUantum Interference Device (SQUID) is a highly nonlinear oscillator exhibiting the rich dynamical behavior. It has been studied for many years and it has found numerous applications in magnetic field sensors, in biomagnetism, in non-destructive evaluation, and gradiometers, among others. Despite its theoretical and practical importance, there is relatively very little work on its multistability, chaotic properties, and bifurcation structure. In the present work, the dynamical properties of the SQUID in the strongly nonlinear regime are demonstrated using a well-established model whose parameters lie in the experimentally accessible range of values. When driven by a time-periodic (ac) flux either with or without a constant (dc) bias, the SQUID exhibits extreme multistability at frequencies around the (geometric) resonance. This effect is manifested by a "snake-like" form of the resonance curve. In the presence of both ac and dc flux, multiple bifurcation sequences and secondary resonance branches appear at frequencies above and below the geometric resonance. In the latter case, the SQUID exhibits chaotic behavior in large regions of the parameter space; it is also found that the state of the SQUID can be switched from chaotic to periodic or vice versa by a slight variation of the dc flux.

11.
Phys Rev E ; 94(3-1): 032219, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27739822

RESUMEN

We report on the emergence of robust multiclustered chimera states in a dissipative-driven system of symmetrically and locally coupled identical superconducting quantum interference device (SQUID) oscillators. The "snakelike" resonance curve of the single SQUID is the key to the formation of the chimera states and is responsible for the extreme multistability exhibited by the coupled system that leads to attractor crowding at the geometrical resonance (inductive-capacitive) frequency. Until now, chimera states were mostly believed to exist for nonlocal coupling. Our findings provide theoretical evidence that nearest-neighbor interactions are indeed capable of supporting such states in a wide parameter range. SQUID metamaterials are the subject of intense experimental investigations, and we are highly confident that the complex dynamics demonstrated in this paper can be confirmed in the laboratory.

12.
Sci Rep ; 6: 29374, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27403780

RESUMEN

Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

13.
Phys Rev Lett ; 110(5): 053901, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23414020

RESUMEN

We introduce a one-dimensional parity-time- (PT-)symmetric nonlinear magnetic metamaterial consisting of split-ring dimers having both gain and loss. When nonlinearity is absent we find a transition between an exact to a broken PT phase; in the former, the system features a two band gapped spectrum with shape determined by the gain and loss coefficients as well as the interunit coupling. In the presence of nonlinearity, we show numerically that as a result of the gain and dissipation matching a novel type of long-lived stable discrete breathers can form below the lower branch of the band with no attenuation. In these localized modes the energy is almost equally partitioned between two adjacent split rings on the one with gain and the other one with loss.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 017601, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400709

RESUMEN

We investigate numerically the effect of the competition of disorder, nonlinearity, and boundaries on the Anderson localization of light waves in finite-size, one-dimensional waveguide arrays. Using the discrete Anderson-nonlinear Schrödinger equation, the propagation of the mode amplitudes up to some finite distance is monitored. The analysis is based on the calculated localization length and the participation number, two standard measures for the statistical description of Anderson localization. For relatively weak disorder and nonlinearity, a higher disorder strength is required to achieve the same degree of localization at the edge than in the interior of the array, in agreement with recent experimental observations in the linear regime. However, for relatively strong disorder and/or nonlinearity, this behavior is reversed and it is now easier to localize an excitation at the edge than in the interior.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(4 Pt 2): 046605, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19905469

RESUMEN

We investigate theoretically the existence of bulk and surface discrete breathers in a one-dimensional magnetic metamaterial comprised of a periodic binary array of split-ring resonators; the two types of resonators used have different resonant frequencies caused by unequal slit sizes. We use the rotating-wave approximation and construct several types of breather excitations both for the energy-conserving as well as dissipative-driven case; we corroborate these approximate results trough numerically exact computations. We demonstrate that discrete breathers can appear spontaneously in the dissipative-driven system as a result of a fundamental instability.


Asunto(s)
Materiales Manufacturados , Modelos Teóricos , Dinámicas no Lineales , Oscilometría/métodos , Simulación por Computador , Campos Electromagnéticos , Magnetismo , Dispersión de Radiación
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(2 Pt 2): 025601, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19391797

RESUMEN

We perform statistical analysis on discrete nonlinear waves generated through modulational instability in the context of the Salerno model that interpolates between the integrable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schrödinger equation. We focus on extreme events in the form of discrete rogue or freak waves that may arise as a result of rapid coalescence of discrete breathers or other nonlinear interaction processes. We find power law dependence in the wave amplitude distribution accompanied by an enhanced probability for freak events close to the integrable limit of the equation. A characteristic peak in the extreme event probability appears that is attributed to the onset of interaction of the discrete solitons of the AL equation and the accompanied transition from the local to the global stochasticity monitored through the positive Lyapunov exponent of a nonlinear map.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 2): 036608, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18517544

RESUMEN

The existence and stability of discrete breathers (DBs) in one- and two-dimensional magnetic metamaterials (MMs), which consist of periodic arrangements (arrays) of split-ring resonators (SRRs), are investigated numerically. We consider different configurations of the SRR arrays, which are related to the relative orientation of the SRRs in the MM, in both one and two spatial dimensions. In the latter case we also consider anisotropic MMs. Using standard numerical methods we construct several types of linearly stable breather excitation in both Hamiltonian and dissipative MMs (dissipative breathers). The study of stability in both cases is performed using standard Floquet analysis. In both cases we find that the increase of dimensionality from one to two spatial dimensions does not destroy the DBs, which may also exist in the case of moderate anisotropy (in two dimensions). In dissipative MMs, the dynamics is governed by a power balance between the mainly Ohmic dissipation and driving by an alternating magnetic field. In that case it is demonstrated that DB excitation locally alters the magnetic response of MMs from paramagnetic to diamagnetic. Moreover, when the frequency of the applied field approaches the SRR resonance frequency, the magnetic response of the MM in the region of the DB excitation may even become negative (extremely diamagnetic).

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(4 Pt 2): 046607, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18517750

RESUMEN

The left-handed properties of metamaterials with saturable nonlinearity are analyzed with respect to their electromagnetic response as a function of externally varying parameters. We demonstrate that the response of the medium is strongly affected by the saturation of the nonlinear effects. The last can be exploited to modulate the amplitude or tune the frequency of the response. Moreover, the existence of bistability regions in large parts of the external parameter space allows for switching between different magnetization states, with either positive or negative response. The stability issue of multiple possible states is addressed through modulational instability analysis of plane wave envelopes in each of those states.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 2): 067601, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17677395

RESUMEN

The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.

20.
Phys Rev Lett ; 97(15): 157406, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-17155360

RESUMEN

Magnetic metamaterials composed of split-ring resonators or U-type elements may exhibit discreteness effects in THz and optical frequencies due to weak coupling. We consider a model one-dimensional metamaterial formed by a discrete array of nonlinear split-ring resonators where each ring interacts with its nearest neighbors. On-site nonlinearity and weak coupling among the individual array elements result in the appearance of discrete breather excitations or intrinsic localized modes, both in the energy-conserved and the dissipative system. We analyze discrete single and multibreather excitations, as well as a special breather configuration forming a magnetization domain wall and investigate their mobility and the magnetic properties their presence induces in the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...